DNA-Based Asymmetric Catalysis: Role of Ionic Solvents and Glymes.
نویسندگان
چکیده
Recently, DNA has been evaluated as a chiral scaffold for metal complexes to construct so called 'DNA-based hybrid catalysts', a robust and inexpensive alternative to enzymes. The unique chiral structure of DNA allows the hybrid catalysts to catalyze various asymmetric synthesis reactions. However, most current studies used aqueous buffers as solvents for these asymmetric reactions, where substrates/products are typically suspended in the solutions. The mass transfer limitation usually requires a long reaction time. To overcome this hurdle and to advance DNA-based asymmetric catalysis, we evaluated a series of ionic liquids (ILs), inorganic salts, deep eutectic solvents (DES), glymes, glycols, acetonitrile and methanol as co-solvents/additives for the DNA-based asymmetric Michael addition. In general, these additives induce indistinguishable changes to the DNA B-form duplex conformation as suggested by circular dichroism (CD) spectroscopy, but impose a significant influence on the catalytic efficiency of the DNA-based hybrid catalyst. Conventional organic solvents (e.g. acetonitrile and methanol) led to poor product yields and/or low enantioselectivities. Most ILs and inorganic salts cause the deactivation of the hybrid catalyst except 0.2 M [BMIM][CF3COO] (95.4% ee and 93% yield) and 0.2 M [BMIM]Cl (93.7% ee and 89% yield). Several other additives have also been found to improve the catalytic efficiency of the DNA-based hybrid catalyst (control reaction without additive gives >99% ee and 87% yield): 0.4 M glycerol (>99% ee and 96% yield at 5 °C or 96.2% ee and 83% yield at room temperature), 0.2 M choline chloride/glycerol (1:2) (92.4% ee and 90% yield at 5 °C or 94.0% ee and 88% yield at room temperature), and 0.5 M dipropylene glycol dimethyl ether (>99% ee and 87% yield at room temperature). The use of some co-solvents/additives allows the Michael addition to be performed at a higher temperature (e.g. room temperature vs 5 °C) and a shorter reaction time (24 h vs 3 days). In addition, we found that a brief pre-sonication (5 min) of DNA in MOPS buffer prior to the reaction could improve the performance of the DNA-based hybrid catalyst. We have also shown that this DNA-based catalysis method is suitable for a variety of different substrates and relatively large-scale reactions. In conclusion, a judicious selection of benign co-solvents/additives could improve the catalytic efficiency of DNA-based hybrid catalyst.
منابع مشابه
A One-pot Condensation for Synthesis 2-methyl-4-phenylpyrano[3, 2-c] chromen-5(4H)-one and Synthesis of Warfarin by Ionic Liquid Catalysis
The anticoagulant racemic warfarin is synthesized by the Michael addition of 4-hydroxycoumarin with benzalacetone in the present of equimolar amounts of imidazolium based ionic liquids [bmim] BF4 and [bmim] Br and other reaction solvents such as H2O, pyridine and ammonia in five different tests. Also synthesis of a derivative of warfarin (2-methyl-4-phenyl pyrano [3, 2-c] chromen-5(4H)-one) und...
متن کاملOrganic co-solvents in aqueous DNA-based asymmetric catalysis.
Water-miscible organic co-solvents can be used in DNA-based catalytic asymmetric reactions at appreciable concentration without a negative effect on enantioselectivity. While the rate of the copper(II) Diels-Alder reaction is affected negatively by the presence of organic co-solvents, the copper(II) catalyzed Michael addition and Friedel-Crafts alkylation reaction are significantly faster. Addi...
متن کاملA One-pot Condensation for Synthesis 2-methyl-4-phenylpyrano[3, 2-c] chromen-5(4H)-one and Synthesis of Warfarin by Ionic Liquid Catalysis
The anticoagulant racemic warfarin is synthesized by the Michael addition of 4-hydroxycoumarin with benzalacetone in the present of equimolar amounts of imidazolium based ionic liquids [bmim] BF4 and [bmim] Br and other reaction solvents such as H2O, pyridine and ammonia in five different tests. Also synthesis of a derivative of warfarin (2-methyl-4-phenyl pyrano [3, 2-c] chromen-5(4H)-one) und...
متن کاملDNA as a chiral scaffold for asymmetric synthesis.
The application of DNA-based hybrid catalysts for enantioselective synthesis has recently emerged. These catalysts, self-assembled from DNA and a metal complex with a specific ligand through supramolecular or covalent anchoring strategies, have demonstrated high enantioselectivity in a variety of carbon-carbon or carbon-heteroatom bond-forming reactions and have expanded their role in asymmetri...
متن کاملDNA-based asymmetric catalysis.
The unique chiral structure of DNA has been a source of inspiration for the development of a new class of bio-inspired catalysts. The novel concept of DNA-based asymmetric catalysis, which was introduced only five years ago, has been applied successfully in a variety of catalytic enantioselective reactions. In this tutorial review, the ideas behind this novel concept will be introduced, an over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RSC advances
دوره 4 96 شماره
صفحات -
تاریخ انتشار 2014